Community Acquired Pneumonia

Definition
Community-Acquired Pneumonia (CAP) is defined as acute infection of the lower respiratory tract with parenchymal involvement in a previously healthy child who acquired the infection outside of the hospital. The diagnosis may be made based on clinical findings of fever, cough, and tachypnea with associated findings on lung examination; however the clinical presentation may vary depending on age, responsible pathogen, and severity of infection. Complicated pneumonia is defined as moderate to large or complex effusions, empyema, abscess or other complications that require adjusted treatment regimens (refer to the Complicated Pneumonia Guidelines for further guidance). Small parapneumonic effusions are common with uncomplicated CAP and often resolve with appropriate antibiotic therapy.

Incidence
Published studies vary in their reported incidence of pneumonia in the developed world; however, generally accepted rates for children < 5 years of age are 3-4 cases per 100 children. The incidence is inversely proportional to patient age.¹

Etiology
The etiology of CAP varies by age, with viral etiologies predominating in infants and toddlers and bacterial etiologies predominating in children and adolescents. In numerous studies, the most commonly identified bacterial etiologies include *Streptococcus pneumoniae* and *Mycoplasma pneumoniae*, with nontypeable *Haemophilus influenzae*, group A *Streptococcus*, *Chlamydia pneumoniae*, *Moraxella catarrhalis*, and *Staphylococcus aureus* identified much less frequently.¹⁻⁴

Diagnosis
CAP is usually diagnosed based on a combination of history (fever, cough, tachypnea, or respiratory distress), physical exam findings (increased work of breathing, crackles, decreased breath sounds, or hypoxemia), and imaging (CXR, most commonly). Blood work is not required to diagnose CAP.

Guideline Inclusion Criteria
Diagnosis of suspected CAP in patients > 3 months through 18 years of age

Guideline Exclusion Criteria
Children less than or equal to three months of age
CAP with moderate to large or complex effusions, lung abscess, or pneumatocele
Cystic fibrosis
Chronic lung disease
Immunodeficiency
Immunosuppression
Sickle cell disease
History of feeding difficulties or aspiration
Chronic co-morbidities
Tracheostomy
Critical Points of Evidence

Evidence Supports

• Amoxicillin (90mg/kg/day divided bid or tid) as first-line agent for treatment of simple CAP. (Refer to Addendum 1 for additional antibiotic options.)
• A trial of amoxicillin, ampicillin, or amoxicillin-clavulanate under observation if patients report a non IgE-mediated or non-serious reaction to penicillin as the majority of patients are not truly allergic and no alternative agent provides as optimal of coverage for *S. pneumoniae*.

Evidence Refutes

• Correlation of laboratory markers in differentiating viral from bacterial CAP.
• The use of azithromycin as monotherapy for treatment of uncomplicated CAP.
• Utility of blood cultures in management of CAP in the outpatient setting

Evidence Lacking/Inconclusive

• Efficacy of treatment at altering clinical course or outcomes for *Mycoplasma* pneumonia.
• Importance of vaccination status with regard to etiology of CAP, specifically the use of ceftriaxone in all patients not fully immunized for H. influenzae type b and *S. pneumoniae*.
• The optimal antibiotic for treatment of uncomplicated CAP in patients with an IgE-mediated penicillin allergy.
• The optimal duration of therapy for treatment of uncomplicated CAP.
• Routine use of oseltamivir in the treatment of patients with suspected but lack of documented influenza virus infection.

Practice Recommendations and Clinical Management

Patient Assessment

Pulse oximetry should be performed in all patients suspected of having CAP. Hypoxemia is defined as oxygen saturation < 90% on room air.\(^1,6,7\)
(Strong recommendation, moderate-quality evidence)

Laboratory Testing

Blood tests such as CBC, CRP, ESR and procalcitonin are not recommended in the routine evaluation of children with CAP as these tests do not reliably differentiate between viral and bacterial etiologies of pneumonia.\(^8-12\)
(Strong recommendation, high-quality evidence)

Rapid testing for influenza should be considered in patients presenting with suspected CAP during the influenza season. \(^1\)
(Strong recommendation, high-quality evidence)

Routine blood cultures should not be performed in evaluation of uncomplicated CAP in the outpatient setting.\(^1,13\)
(Strong recommendation, moderate-quality evidence)

Blood cultures should be obtained in children who fail to demonstrate clinical improvement, have progressive symptoms, or experience deterioration after initiation of antibiotic therapy.\(^1,13\)
(Strong recommendation, moderate-quality evidence)

Imaging

Routine CXRs are not required to confirm the diagnosis of CAP in patients well enough to be treated in the outpatient setting;\(^1,13\) however, this must be weighed against evidence that CXR use may decrease overtreatment of viral infections with antimicrobial therapy.\(^14-16\)
(Strong recommendation, high-quality evidence)

CXR should be obtained in patients who fail to respond to therapy, deteriorate, or are hospitalized for CAP. \(^1\)
Repeat CXR are not necessary in children who recover uneventfully from CAP unless there is concern for foreign body, mass, or anatomic anomaly.\(^{(1)}\)

(Strong recommendation, moderate-quality evidence)

Management

High-dose amoxicillin should be used as first-line treatment in patients with CAP suspected to be of bacterial etiology. Refer to Addendum 1 and the treatment algorithms for further guidance.\(^{(1)}\)

(Strong recommendation, high-quality evidence)

Clindamycin is a good oral option for treating CAP of bacterial etiology in patients with an IgE-mediated penicillin allergy Addendum 2.\(^{(1,17)}\)

(Weak recommendation, moderate-quality evidence)

In patients not responding to first-line antibiotics, the presence of a complicated pneumonia, antimicrobial resistance, and alternative etiologies should be considered.\(^{(1,18)}\)

(Strong recommendation, low-quality evidence)

Supplemental oxygen should be administered to patients with oxygen saturations < 90%.\(^{(1,18)}\)

(Strong recommendation, moderate-quality evidence)

Consults and referrals

Subspecialty consultation is generally not required in the management of simple CAP; however, there are a number of instances when it should be considered, including but not limited to the following:

Pediatric Critical Care (PICU)

Consultation with PICU specialist is advised if the patient meets criteria for PICU admission. Refer to the subsequent section for more details.

Pediatric Infectious Disease

Consider for patients with a complicated clinical course, including those not improving with routine management, when concerned for an unusual pathogen, or for those with a complicated pneumonia.

Pediatric Surgical

Recommended for patients with complicated pneumonia. Please refer to the Complicated Pneumonia Guidelines for specific guidance.

Pediatric Pulmonologist

Consider for patients with recurrent pneumonia or if concerned for aspirated foreign body.

Patient disposition

Admission Criteria

- Sepsis
- Moderate-to-severe retractions, grunting, or nasal flaring
- Altered mental status or lethargy
- Oxygen saturations persistently < 90% on room air
- Known moderate-to-large effusion, empyema, or necrotizing changes
- Failure of outpatient antibiotic therapy (at provider’s discretion)
- Inability to tolerate oral antibiotics
- Consider admission if concern for inability to comply with therapy or obtain appropriate outpatient follow-up
- Consider admission for patients < 6 months of age if concern for bacterial etiology

PICU Admission Criteria

- Altered mental status
- Sepsis
- FiO2 > 50% required to maintain sats ≥ 90%
- Concern for impending respiratory failure

Discharge Criteria

- Ability to tolerate oral antibiotics
- Mildly increased to normal work of breathing
- Oxygen saturations ≥ 90% on room air for >8 hours
- Close outpatient follow-up ensured
- Improvement in clinical symptoms, including fever and respiratory rate, if indicated
Follow-up
Follow-up with primary care provider is recommended within 48-72 hours to assess response to therapy. Earlier follow-up is indicated if patients experience significant worsening of clinical condition.

Repeat CXR is indicated in 4-6 weeks for patients with recurrent pneumonia involving the same lobe or if concerned for anatomic anomaly, chest mass, or foreign body aspiration. (1)

Prevention
Vaccination against S. pneumonia (PCV13), H. influenzae type b, and influenza virus is recommended to prevent CAP and its complications. Refer to the CDC’s immunization guidelines for more information.

Parents and healthcare providers should be vaccinated against influenza and pertussis. (1)

Outcome Measures
- Inpatient antibiotic use (broad-spectrum and narrow-spectrum)
- ED antibiotic use (broad-spectrum and narrow-spectrum)
- Return to ED within 72 hours
- Readmission within 15
- Average length-of-stay
- CBC Utilization Rate
- Blood Culture Utilization Rate
EXCLUSION CRITERIA
- Cystic Fibrosis
- Chronic lung disease
- Immunodeficiency
- Immunosuppression
- Moderate to large or complex effusions, lung abscess or pneumatocele
- Sickle Cell Disease
- History of feeding difficulties or aspiration
- Chronic co-morbidities
- Tracheostomy
- If suspected Viral Etiology and no suspicion of bacterial confection

Inclusion Criteria
Suspected community-acquired pneumonia in children greater than 3 months to 18 years of age.

Evidence Based Outcome Center

Oral Antibiotic Management:
First Line Antibiotic: High-Dose Amoxicillin for TOTAL 7-10 days 90 mg/kg/day divided BID or TID Max dose 3.5 gm per day
(Refer to Addendum 1 for antibiotic guidance)

Follow-up: 48-72 hours (sooner if worsening condition)

Initiate Empiric Antibiotic Therapy:
First Line Antibiotic: Ampicillin
(Refer to Addendum 1 for antibiotic guidance)

Obtain 2-view Chest X-ray (if not previously performed)

Sepsis Pathway

Complicated Pneumonia Guideline

EXCLUSION CRITERIA
- Cystic Fibrosis
- Chronic lung disease
- Immunodeficiency
- Immunosuppression
- Moderate to large or complex effusions, lung abscess or pneumatocele
- Sickle Cell Disease
- History of feeding difficulties or aspiration
- Chronic co-morbidities
- Tracheostomy
- If suspected Viral Etiology and no suspicion of bacterial confection

Mild Pneumonia Criteria
- Normal to Mild WOB
- Oxygen Saturations ≥ 90% RT

Moderate/Severe Pneumonia Criteria
- Moderate-to-severe retractions
- Grunting or nasal flaring
- Altered mental status or lethargy
- Oxygen saturations persistently < 90% on room air
- Known moderate-to-large effusion, empyema, or necrotizing changes
- Failure of outpatient antibiotic therapy (No improvement in 48-72 hours on appropriate therapy OR significant worsening on appropriate therapy)

Severe/ PICU Criteria
- FiO2 ≥ 0.5
- Sepsis
- Impending respiratory failure
- Altered mental status

Meets Criteria for Outpatient Management?
Criteria:
- Able to tolerate oral antibiotics
- Close outpatient follow-up ensured
- Normal hydration

Meets PICU Criteria?
- Yes
- No

DISCHARGE

ADMIT to Floor

PICU consult; Manage OFF PATHWAY (Refer to Addendum 1 for antibiotic guidance)

Provider Assessment

Sepsis

Mild Pneumonia 1

Moderate/Severe Pneumonia 2

Testing
- Consider Chest X-Ray when diagnosis uncertain

Testing
- Obtain 2-view Chest X-Ray (if not previously performed)
- P/V + NS Bolus
- Blood culture, CRP, ESR, CBC with diff if toxic appearing or concern for complicated pneumonia.

Meets Criteria for Outpatient Management?

Yes

No

Meets PICU Criteria?

Yes

No

Yes

No

Meets PICU Criteria?

Yes

No

Yes

No

Yes
Community-acquired Pneumonia Outpatient Pathway
Evidence Based Outcome Center

Inclusion Criteria
Suspected community-acquired pneumonia in children greater than 3 months to 18 years of age.

Assessment of Respiratory Severity
Are any of the following signs or symptoms present?
- Moderate-to-severe retractions
- Grunting or nasal flaring
- Known moderate-to-large effusion, empyema, or necrotizing changes
- Altered mental status or lethargy
- Oxygen saturations persistently < 90% on room air
- Sepsis

-YES Refer to DCMC ER for immediate evaluation

Meets Criteria for Outpatient Management?
Criteria:
- Able to tolerate oral antibiotics
- Mildly increased to normal work of breathing
- Close outpatient follow-up ensured

-YES Consider admission for infants < 6 months of age

Outpatient Oral Antibiotic Management:
First-Line Antibiotic:
High Dose Amoxicillin for 7-10 days
90 mg/kg/day divided BID or TID | (or 3.5 grams/day)
(Refer to Addendum 1 for antibiotic guidance)

Follow-up:
48-72 hours (sooner if worsening condition)

Responding?
-YES Continue antimicrobial therapy for 7-10 day total course
-NO Chest X-ray

Effusion?
-YES Consider testing for RSV & Influenza if it will change medical management
-NO No initial blood work required

Consider Chest X-Ray to confirm clinical diagnosis

If suspected viral etiology and no suspicion of bacterial coinfection consider Managing OFF-Pathway
Refer to CDC guidelines if concern for influenza

Exclusion Criteria
- Cystic Fibrosis
- Chronic lung disease
- Immunodeficiency
- Immunosuppression
- Moderate to large or complex effusions, lung abscess or pneumatocele
- Sickle Cell Disease
- History of feeding difficulties or aspiration
- Chronic co-morbidities
- Tracheostomy
- If Suspected Viral Etiology and no suspicion of bacterial coinfection

For questions concerning this pathway, Click Here
Last Updated April 26, 2019
Community-Acquired Pneumonia Inpatient Pathway

Evidence Based Outcome Center

Exclusion Criteria
- Cystic Fibrosis
- Chronic lung disease
- Immune deficiency
- Immunosuppression
- Moderate to large or complex effusions, lung abscess or pneumatocele
- Sickle Cell Disease
- History of feeding difficulties or aspiration
- Chronic co-morbidities
- Tracheostomy
- If suspected Viral Etiology and no suspicion of bacterial coinfection

Inclusion Criteria
Suspected community-acquired pneumonia in children greater than 3 months to 18 years of age.

Assessment of Respiratory Severity
Are any of the following signs or symptoms present?
- Moderate-to-severe retractions
- Grunting or nasal flaring
- Altered mental status or lethargy
- Oxygen saturations persistently < 90% on room air
- Known moderate-to-large effusion, empyema, or necrotizing changes
- Failure of outpatient antibiotic therapy
- Sepsis

If not recently obtained CONSIDER testing:
- 2-view Chest X-ray
- Rapid testing for RSV & Influenza
- Blood culture, CBC with diff, sputum cx (if able), CRP, ESR
- Additional blood work as indicated by patient condition

Initiate Empiric Antibiotic Therapy:
First Line Antibiotic: Ampicillin
(Refer to Addendum 1 for antibiotic guidance)
- Administer oxygen to keep O2 saturations ≥90%
- IVF as needed (isotonic preferred)

Meets Criteria for Outpatient Management?
Criteria:
- Oxygen saturations ≥ 90% on room air for ≥8 hours
- Able to tolerate oral antibiotics
- Mildly increased to normal work of breathing
- Close outpatient follow-up ensured

Meets PICU criteria?
YES
- PICU consult; Manage OFF PATHWAY
 (Refer to Addendum 1 for antibiotic guidance)

NO
- Consider rapid testing for RSV & Influenza if it will change medical management

Order Chest X-ray
- Pleural Effusion?
 - Moderate to Large
 - Complicated Pneumonia Guideline
 - Small but not complicated
 - Reassess diagnosis
 - Perform additional diagnostic testing as indicated
 - Broaden antimicrobial therapy (Consider coverage for resistant S. pneumoniae, H. influenzae, atypicals, or S. aureus) (Refer to addendum 1 for antibiotic guidance)
 - Consider consultation with an Infectious Disease specialist

Provide prescription for antimicrobial therapy to complete TOTAL 7-10 day course
(Refer to Addendum 1 for antibiotic guidance)
- Instruct to follow-up in 48-72 hours

DISCHARGE

Treatment Failure
No improvement in 48-72 hours on appropriate therapy OR significant worsening on appropriate therapy

Responding
Improvement in clinical signs including fever, oxygen saturation, and respiratory rate within 48-72 hours

PICU Criteria
- FiO2 ≥ 0.5
- Sepsis
- Impending respiratory failure
- Altered mental status
Outpatient Treatment of Community-Acquired Pneumonia (CAP): Guidelines for Empiric Antibiotic Selection

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Maximum Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Line Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>90 mg/kg/day divided bid</td>
<td>1.75 grams/dose (or 3.5 grams/day)</td>
</tr>
<tr>
<td>First-Line therapy: IgE-Mediated Allergy to Penicillins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>30–40 mg/kg/day divided tid</td>
<td>450 mg/dose</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>30 mg/kg/day divided bid</td>
<td>500 mg/dose</td>
</tr>
<tr>
<td>Cefdinir</td>
<td>14 mg/kg/day divided bid</td>
<td>300 mg/dose</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>10 mg/kg/day divided bid</td>
<td>200 mg/dose</td>
</tr>
<tr>
<td>Treatment Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>90 mg/kg/day amoxicillin component divided bid</td>
<td>1.75 grams/day#</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>10 mg/kg once x3 doses</td>
<td></td>
</tr>
<tr>
<td>Treatment Failure: IgE-Mediated Allergy to Penicillins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycinα</td>
<td>See dosing above</td>
<td>See above</td>
</tr>
<tr>
<td>Azithromycin*</td>
<td>See dosing above</td>
<td>See above</td>
</tr>
<tr>
<td>Concern for Atypical Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin*</td>
<td>See dosing above</td>
<td>See above</td>
</tr>
<tr>
<td>Concern for Atypical Infection: IgE-Mediated Allergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>15 mg/kg/day divided bid</td>
<td>500 mg/dose</td>
</tr>
<tr>
<td>Doxycycline (>7 years of age only)</td>
<td>4 mg/kg/day divided bid</td>
<td>100 mg/dose</td>
</tr>
<tr>
<td>Concern for Influenza (Especially patients < 2 years or with high-risk conditions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oseltamivir</td>
<td>Infants < 1 year: 3 mg/kg/dose bid</td>
<td>30 mg/dose if <15 kg</td>
</tr>
<tr>
<td>Children > 1 year:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 15 kg: 30 mg bid;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 15 to 23 kg: 45 mg bid;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 23 to 40 kg: 60 mg bid;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 40 kg: 75 mg bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevention of Antibiotic-associated Diarrhea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culturelle</td>
<td>1 capsule once daily</td>
<td></td>
</tr>
<tr>
<td>Florastor</td>
<td>1 capsule twice daily</td>
<td></td>
</tr>
</tbody>
</table>

Annotations:
€ Based on multiple in-vitro studies and our DCMC antibiogram, oral cephalosporins are inferior to oral amoxicillin for the treatment of disease caused by S. pneumoniae. The 2016-2017 DCMC antibiogram demonstrates decreasing penicillin MICs for S. pneumoniae (less penicillin resistance) and that clindamycin is superior to oral cephalosporins such as cefuroxime for treating S. pneumoniae. In-vitro data evaluating S. pneumoniae MICs demonstrate that cefpodoxime is superior to other oral second or third-generation cephalosporins such as cefprozil, cefuroxime, and cefdinir, with cefdinir and cefixime being the least efficacious; however, **cefpodoxime may require prior authorization**.
† Treatment failure is defined as no improvement within 48-72 hours of appropriate therapy or worsening on appropriate therapy; **consider less common CAP etiologies such as penicillin-resistant S. pneumonia, H. influenzae, and atypical organisms**.
α Clindamycin does not treat H. influenzae; therefore, the addition of Azithromycin to Clindamycin or use of a second or third-generation cephalosporin over Clindamycin should be considered in the penicillin-allergic patient in whom there is concern for H. influenzae
£ The preferred dosing formulation for liquid medication is 600 mg Amoxicillin with 42.9 mg clavulanate per 5 mL; the preferred dosing for tablet form is 875 mg (contains 125 mg clavulanate) given bid
* Due to lack of evidence regarding the efficacy of antimicrobials in altering the clinical course of Mycoplasma CAP, the difficulty in accurate clinical diagnosis and the risk of serious sequelae with untreated S. pneumoniae, please consider using these antimicrobials only in combination with beta-lactam therapy.
Amoxicillin-clavulanate maximum dose is limited by GI adverse events due to the clavulanic acid component. Daily amount of clavulanic acid should be limited to 250 mg, leading to varied max daily amounts of amoxicillin depending on formulation: 1750 mg for Augment 875-125 mg (7:1) tablet, 1750 mg for Augmentin 400 mg-57 mg per 5 mL (7:1) suspension, 3500 mg for Augmentin ES 600-42.9 mg per 5 mL (14:1) suspension.
Inpatient Treatment of Community-Acquired Pneumonia (CAP):
Guidelines for Empiric Antibiotic Selection

- **First-line**: Ampicillin
 - IgE-mediated allergy to penicillins: Ceftriaxone or Clindamycin

- **Outpatient treatment failure**:†
 - First line: (Amp/sulbactam or Ceftriaxone) +/- atypical coverage
 - IgE-mediated allergy to penicillins: (Ceftriaxone +/- atypical coverage) or (Clindamycinα AND azithromycin) or Levofloxacin

- **Life-threatening infection** (rapid deterioration, septic shock, etc.):
 - First line#: Ceftriaxone + Vancomycin (add Clindamycin if signs of toxin-mediated disease)

- **Complicated pneumonia or concern for S. aureus** (e.g. empyema, necrotizing changes, or moderate-to-large effusion):
 - First-line#: Ceftriaxone + (Clindamycin or Vancomycin)

- **Consistent with an atypical infection**:
 - First-line: Azithromycin
 - IgE-mediated allergy: Clarithromycin or Doxycycline (>7 yrs of age)

- **Concern for influenza**:
 - First-line: Add Oseltamivir; consider broadening coverage to include S. aureus if concern for secondary bacterial etiology and patient severely ill

- **Prevention of antibiotic-associated diarrhea**: Consider the addition of an oral probiotic (e.g. Culturelle or Florastor)

Recommended Doses of Commonly Used Antimicrobials

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Max Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin and Amp/Sulbactam</td>
<td>50 mg/kg/dose q6hrs</td>
<td>2 grams/dose</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>IV/po: 10 mg/kg once daily x3 doses</td>
<td>500 mg</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>75-100 mg/kg/day</td>
<td>2 grams/dose/day</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>30-40 mg/kg/day divided tid or qid</td>
<td>600 mg/dose; 2700 mg/day</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>6 months – <5 years: 16-20 mg/kg/day divided bid; 5 -16 years: 8-10 mg/kg/day once daily</td>
<td>750 mg/day</td>
</tr>
<tr>
<td>Oseltamivir</td>
<td>Infants < 1 year: 3 mg/kg/dose bid Children > 1 year: < 15 kg: 30 mg bid; > 15 to 23 kg: 45 mg bid; > 23 to 40 kg: 60 mg bid; > 40 kg: 75 mg bid</td>
<td>30 mg/dose if <15 kg</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15 mg/kg/dose every 6 hours</td>
<td>1000 mg/dose</td>
</tr>
</tbody>
</table>

Annotations:

† Treatment failure is defined as no improvement within 48-72 hours of appropriate therapy or worsening on appropriate therapy; consider less common CAP etiologies such as penicillin-resistant S. pneumonia, S. aureus, H. influenzae, and atypical organisms

α Clindamycin does not treat disease caused by H. influenzae; therefore, the addition of Azithromycin to Clindamycin or use of a second or third-generation cephalosporin over Clindamycin is required for the penicillin-allergic patient in whom there is concern for H. influenzae

For patients with an IgE-mediated allergy to Ceftriaxone, Levofloxacin is recommended; For patients with an allergy to Vancomycin, Linezolid is recommended (Linezolid use requires ID consultation)

ƒ Refer to DCMC Complicated Pneumonia Guidelines

* Due to lack of evidence regarding the efficacy of antimicrobials in altering the clinical course of Mycoplasma CAP, the difficulty in accurate clinical diagnosis and the risk of serious sequelae with untreated S. pneumoniae, please consider using these antimicrobials only in combination with beta-lactam therapy.

$ Ceftriaxone at 100 mg/kg dosing is reserved for patients in whom there is a concern for resistant S. pneumoniae or critically ill (divided bid)
Inpatient Transition to Home for Community-Acquired Pneumonia (CAP): Guidelines for oral step-down therapy when causative organism is unknown

<table>
<thead>
<tr>
<th>Inpatient Antibiotic</th>
<th>Outpatient Antibiotic with Dosing</th>
<th>Max Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Amoxicillin: 90 mg/kg/day divided bid or tid</td>
<td>3.5 grams/day</td>
</tr>
<tr>
<td>Amp/Sulbactam</td>
<td>Amoxicillin-clavulanate(^c): 90 mg/kg/day divided bid (dosing based on Amoxicillin component)</td>
<td>1.75 grams/day(^d)</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Azithromycin: 10 mg/kg once daily x3 doses</td>
<td>500 mg</td>
</tr>
<tr>
<td>Ceftriaxone (If Ceftriaxone was administered without the patient meeting criteria for its use, the drug of choice for oral step-down therapy is Amoxicillin.)</td>
<td>Effusion, empyema, complicated clinical course, or desire coverage for H. influenzae: Amoxicillin-clavulanate(^c): 90 mg/kg/day divided bid (dosing based on Amoxicillin component)</td>
<td>1.75 grams/day(^d)</td>
</tr>
<tr>
<td></td>
<td>IgE-mediated penicillin allergy(^c):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clindamycin: 30 mg/kg/day divided tid</td>
<td>450 mg/dose</td>
</tr>
<tr>
<td></td>
<td>Cefuroxime: 30 mg/kg/day divided bid</td>
<td>500 mg/dose</td>
</tr>
<tr>
<td></td>
<td>Cefpodoxime: 10 mg/kg/day divided bid (not covered by Medicaid)</td>
<td>200 mg/dose</td>
</tr>
<tr>
<td>Clindamycina</td>
<td>Clindamycin: 30 mg/kg/day divided tid</td>
<td>600 mg/dose</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>Levofoxacin: 6 mos – <5 yrs: 16–20 mg/kg/day divided bid; 5 yrs – 16 yrs: 8–10 mg/kg/day once daily</td>
<td>750 mg/day</td>
</tr>
<tr>
<td>Oseltamivir</td>
<td>Infants < 1 year: 3 mg/kg/dose bid x 5 days</td>
<td>30 mg/dose if <15 kg</td>
</tr>
<tr>
<td></td>
<td>Children > 1 year: < 15 kg: 30 mg bid x 5 days; > 15 to 23 kg: 45 mg bid x 5 days; > 23 to 40 kg: 60 mg bid x 5 days; > 40 kg: 75 mg bid x 5 days</td>
<td></td>
</tr>
</tbody>
</table>

Consider the addition of an oral probiotic to decrease the risk of antibiotic-associated diarrhea

Annotations:
\(^c\) The preferred dosing formulation for liquid medication is 600 mg Amoxicillin with 42.9 mg clavulanate per 5 mL; the preferred dosing for tablet form is 875 mg (contains 125 mg clavulinate) given bid or tid.
\(^d\) Amoxicillin-clavulanate maximum dose is limited by GI adverse events due to the clavulanic acid component. Daily amount of clavulanic acid should be limited to 250 mg, leading to varied max daily amounts of amoxicillin depending on formulation: 1750 mg for Augmentin 875-125 mg (7:1) tablet, 1750 mg for Augmentin 400 mg-57 mg per 5 mL (7:1) suspension, 3500 mg for Augmentin ES 600-42.9 mg per 5 mL (14:1) suspension.
\(^e\) Based on multiple in-vitro studies and our DCMC antibiogram, oral cephalosporins are inferior to oral amoxicillin for the treatment of disease caused by S. pneumoniae. The 2016-2017 DCMC antibiogram demonstrates decreasing penicillin MICs for S. pneumoniae (less penicillin resistance) and that clindamycin is superior to oral cephalosporins such as cefuroxime for treating S. pneumoniae. In-vitro data evaluating S. pneumoniae MICs demonstrate that cefpodoxime is superior to other oral second or third-generation cephalosporins such as cefprozil, cefuroxime, and cefdinir, with cefdinir and cefixime being the least efficacious; however, cefpodoxime may require prior authorization. Clindamycin does not treat disease caused by H. influenzae; therefore, the addition of Azithromycin to Clindamycin or use of a second or third-generation cephalosporin over Clindamycin is required for the penicillin-allergic patient in whom there is concern for H. influenzae.
Gram Positive

<table>
<thead>
<tr>
<th>GRAM POSITIVE</th>
<th>Number of isolates</th>
<th>Penicillin</th>
<th>Penicillin – M^</th>
<th>Ampicillin</th>
<th>Amoxicillin/clavulanate</th>
<th>Ampicillin/sulbactam</th>
<th>Oxacillin</th>
<th>Clindamycin</th>
<th>Trim/Sulfa</th>
<th>Tetracycline</th>
<th>Vancomycin</th>
<th>Cefuroxime</th>
<th>Ceftriaxone</th>
<th>Cefotaxime – M^</th>
<th>Cefepime</th>
<th>Cefepime – M^</th>
<th>Azithromycin</th>
<th>Levofloxacin</th>
<th>Linezolid - ID</th>
<th>Daptomycin - ID</th>
<th>Meropenem - ID</th>
<th>Gent Synergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSA</td>
<td>464</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>100</td>
<td>99</td>
<td>100</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>MRSA</td>
<td>262</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97</td>
<td>97</td>
<td>99</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>119</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>68</td>
<td>72</td>
<td>96</td>
<td>100</td>
<td>75</td>
<td>100</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>E. faecalis</td>
<td>260</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. faecium</td>
<td>12</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>69</td>
<td>97</td>
<td>54</td>
<td>97</td>
<td></td>
<td>91</td>
<td>64</td>
<td>100</td>
<td>77</td>
<td>100</td>
<td>99</td>
<td>91</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>60</td>
<td>99</td>
<td>100</td>
<td>86</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

*Insufficient data for analysis
ID – Infectious Diseases consult required

Penicillin - M^ = % susceptible using meningitis breakpoint of MIC ≤ 0.06
Cefotaxime/Ceftriaxone – M^ = % susceptible using meningitis breakpoint of MIC ≤ 0.5
Cefepime - M^ = % susceptible using meningitis breakpoint of MIC ≤ 0.5

SHF antibiograms are intended for use by healthcare practitioners practicing within SFH.
Distribution of SFH antibiograms to drug company representatives is prohibited.
GRAM NEGATIVE

<table>
<thead>
<tr>
<th></th>
<th>Ampicillin</th>
<th>Amoxicillin/clavulanate</th>
<th>Ampicillin/sulbactam</th>
<th>Cefazolin</th>
<th>Cefuroxime</th>
<th>Ceftriaxone</th>
<th>Cefotaxime</th>
<th>Piperacillin/tazobactam</th>
<th>Cefepime</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
<th>Ciprofloxacin</th>
<th>Levofloxacin</th>
<th>Trim/Sulfa</th>
<th>Aztreonam</th>
<th>Meropenem - ID</th>
<th>Amikacin - ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Pseudomonas Breakpoints (mcg/mL)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>16 [SDD]</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2/38</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas Breakpoints (mcg/mL)</td>
<td></td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>E. coli</td>
<td>934</td>
<td>43</td>
<td>90§</td>
<td>51</td>
<td>93§</td>
<td>94§</td>
<td>98</td>
<td>98 [SDD]</td>
<td>98</td>
<td>98</td>
<td>92</td>
<td>93</td>
<td>92</td>
<td>69</td>
<td>99</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>128</td>
<td>94§</td>
<td>83</td>
<td>93</td>
<td>86</td>
<td>94</td>
<td>94</td>
<td>96 [SDD]</td>
<td>95</td>
<td>98</td>
<td>98</td>
<td>97</td>
<td>98</td>
<td>89</td>
<td>97</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>44</td>
<td>100</td>
<td>86</td>
<td>70</td>
<td>93</td>
<td>100</td>
<td>100</td>
<td>100 [SDD]</td>
<td>100</td>
<td>93</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>85</td>
<td>80</td>
<td>97§</td>
<td>92</td>
<td>91</td>
<td>99</td>
<td>97</td>
<td>97 [SDD]</td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>99</td>
<td>89</td>
<td>98</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>73</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>E. aerogenes</td>
<td>19</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>S. marcescens</td>
<td>74</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>C. freundii</td>
<td>16</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>276</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>H. influenzae</td>
<td>8</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>82</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>A. baumanii/haemolyticus</td>
<td>14</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*Insufficient data for analysis
ID – Infectious Diseases consult required
SDD – susceptible dose dependent, if MIC=8 extend infusion time to 3 hours
† Because of the presence of inducible cephalosporinase, these antimicrobials should be considered resistant regardless of in vitro susceptibility results.

Cefazolin gram-negative susceptibilities include all sources and are based on the 2013 susceptibility breakpoint of MIC ≤ 8
Cefuroxime gram-negative susceptibilities include all sources and are based on the oral susceptibility breakpoint of MIC ≤ 4

Note: A cefazolin MIC ≤ 16 for E. coli, K. pneumoniae, and P. mirabilis predicts susceptibility to cephalexin and cefuroxime axetil for treatment of cystitis. Some isolates may be susceptible to cefuroxime when testing resistant to cefazolin.

ESBLs (Extended-Spectrum β-Lactamases) data not included in the antibiogram chart
61 (6.1%) ESBL+ E. coli isolates; 19 (12.9%) ESBL+ K. pneumoniae isolates; 11 (20%) ESBL + K oxytoca isolates

SHF antibiogram are intended for use by healthcare practitioners practicing within SFH. Distribution of SFH antibiograms to drug company representatives is prohibited.
ADDENDUM 3
Discussion and Review of the Evidence

Contents
1 Etiology .. 2
 1.1 Streptococcus pneumoniae .. 2
 1.2 Mycoplasma pneumoniae ... 2
 1.3 Haemophilus influenzae ... 2
 1.4 Streptococcus pyogenes ... 2
 1.5 Staphylococcus aureus ... 3
 1.6 Viruses ... 3
 1.7 Underimmunized patients .. 3
2 Diagnostic Evaluation ... 4
 2.1 History .. 4
 2.2 Physical Exam .. 4
 2.3 Laboratory Testing .. 4
 2.4 Imaging ... 5
3 Management .. 6
 3.1 Empiric Antibiotic Selection ... 6
 3.2 Empiric Therapy for Patients with IgE-mediated Penicillin Allergies ... 6
 3.3 Empiric Use of Cephalosporins + Clindamycin ... 7
 3.4 Inpatient and Outpatient Treatment Failures .. 7
 3.5 Treatment of Suspected Atypical Pneumonia ... 8
 3.6 Inpatient and Outpatient Treatment Failures in Patients with an IgE-mediated Allergy to Penicillin 8
 3.7 Considerations for Levofloxacin, Linezolid, and Vancomycin ... 8
 3.8 Antibiotic Selection for Oral Step-down Therapy .. 9
 3.9 Antibiotic Selection for Suspected MRSA or Life-threatening Presentations .. 9
 3.10 Duration of Therapy .. 10
 3.11 Probiotics ... 10
 3.12 Oxygen use, pulse oximetry, and intravenous hydration ... 10

Last Updated: May 2019
Etiology

The etiology of CAP varies by age, with viral etiologies predominating in infants and toddlers and bacterial etiologies predominating in children and adolescents. In numerous studies, the most commonly identified bacterial etiologies include Streptococcus pneumoniae and Mycoplasma pneumoniae with nontypeable Haemophilus influenzae, group A Streptococcus, Chlamydia pneumoniae, Moraxella catarrhalis, and Staphylococcus aureus identified much less frequently.[1,5,19,21] A significant limitation to all of the studies, however, is that they only discover the causative pathogens for which they are testing, likely resulting in under-detection of some organisms. Additionally, no two studies utilize the same testing methods, even for the same organism; their definitions of pneumonia are occasionally different; and not all study participants in any given study undergo testing for every organism under investigation.

1.1 Streptococcus pneumoniae

Even after the introduction of pneumococcal vaccines in the last ten years, S. pneumoniae continues to be an important pathogen in childhood CAP.[18,19] In addition to lobar pneumonia, pneumococcus can cause complicated disease such as effusion, empyema, and necrotizing pneumonia.[1] Rarely, S. pneumoniae can cause hemolytic uremic syndrome (HUS) in severe or complicated disease.[22-25]

The seven-valent pneumococcal vaccine, introduced in 2000, was effective in decreasing the incidence of clinical and radiographically confirmed pneumonia in children less than age 2.[26] Because of changes in the most common serotypes after introduction of the seven-valent vaccine, the 13-valent pneumococcal vaccine was introduced in 2010 and seems to have yielded similarly impressive results.[27-28] The serotypes most commonly associated with HUS are included in the 13-valent vaccine.[22-21]

Likely because the 13-valent vaccine is reducing highly drug-resistant forms of pneumococcus, DCMC’s most recent antibiogram demonstrates that all locally isolated strains of pneumococcus are sensitive to penicillin (MICs ≤ 2 mg/L). Locally, there are continued high levels of resistance to azithromycin.

1.2 Mycoplasma pneumoniae

M. pneumoniae is a common etiology of CAP in children, with some studies detecting it in patients even as young as age 2 to 3 years.[4,5,19,29] Recent systematic reviews, however, have shown that the clinical diagnosis of M. pneumoniae is difficult in all ages, with very few exam or CXR findings being sensitive or specific for Mycoplasma infection.[30] Diagnostic testing is problematic as well since it is not available in a clinically relevant time frame and is confounded by a high prevalence of asymptomatic carriage.[31-32] Despite these known difficulties with accurate diagnosis, a recent European study suggests that M. pneumoniae infection should be considered in patients who are not responding to initial antibiotic therapy.[18] Recently, multiple systematic reviews have failed to uncover any evidence regarding efficacy of Mycoplasma treatment.[33-34]

1.3 Haemophilus influenzae

The IDSA’s 2011 pediatric CAP guidelines describe H. influenzae as an infrequent pathogen in pediatric CAP.[1] Widespread use of the H. influenzae type b (Hib) vaccine since the 1980’s has decreased the incidence of Hib, but studies continue to demonstrate nontypeable H. influenzae as a causative organism in CAP.[2-3] and studies investigating invasive H. influenzae disease have described pneumonia as the primary source of infection.[23,35-36] In a recent European study evaluating the etiology of CAP in patients not responding to treatment, H. influenzae was the most common etiology identified by BAL specimen, but this study was limited by the lack of a control group.[18] In frequent use of specific testing for H. influenzae (e.g. serum titers, PCR, etc) may result in under-identification of this pathogen in many studies.[4]

1.4 Streptococcus pyogenes

Group A Streptococcus is an uncommon, though increasingly recognized, cause of pediatric CAP.[1,19,37] It is associated with more severe and rapid clinical presentations, toxin-mediated disease, empyemas, and necrotizing pneumonia.[1,37-39] One study comparing GAS pneumonia to those caused by S. pneumoniae found that GAS disease is more likely to cause effusion, prolonged fever, and longer hospital stays.[39]
1.5 Staphylococcus aureus

S. aureus is an infrequent\(^\text{4,19,40}\) but potentially devastating cause of CAP. It is associated with recent viral infections, especially influenza\(^\text{37,41-42}\), and commonly causes parapneumonic empyemas, cavitary lesions, pneumatoceles, pulmonary abscesses, and necrotizing pneumonias.\(^\text{42 - 44}\)

1.6 Viruses

Viral infections, including RSV and influenza, are common etiologies of CAP, especially in young children.\(^\text{1,4,8,20}\) A secondary bacterial pneumonia is unlikely in a viral illness but should be considered if a patient experiences clinical worsening, persistent fever, or a biphasic illness (initial improvement followed by recurrence of fever and deterioration). When a secondary bacterial pneumonia does occur in the presence of influenza infection, patients appear to be at increased risk of disease caused by *S. aureus* and group A *Streptococcus* in addition to *S. pneumoniae*.\(^\text{1,37,41-42}\)

1.7 Underimmunized patients

Despite the IDSA’s 2011 recommendations that under-immunized children hospitalized with CAP receive broader-spectrum antibiotic therapy than appropriately immunized children, no studies were found that evaluate how the etiology of CAP differs between vaccinated and unvaccinated children. There is evidence, however, that the introduction of the 7-valent and 13-valent pneumococcal vaccines does protect unvaccinated populations from invasive disease caused by these vaccine serotypes\(^\text{28,45}\) and that pneumococcal serotypes causing nasopharyngeal colonization is altered even in unvaccinated individuals after introduction of the 13-valent pneumococcal vaccination in their community.\(^\text{46-47}\) Additionally, the serotypes discovered in adults with invasive pneumococcal disease are associated with the vaccination status of that patient’s child contacts.\(^\text{48}\)
2 Diagnostic Evaluation

2.1 History

Patients with community-acquired pneumonia commonly present with symptoms of fever, cough, tachypnea, and respiratory distress. Some patients may complain of shortness of breath, chest pain, vomiting, or abdominal pain. Occasionally, they will also experience systemic symptoms such as headache and malaise. One study demonstrated that a history of chest pain and a longer duration of fever are both correlated with the finding radiographic pneumonia in the emergency department.\(^\text{49}\)

As part of routine history-taking for suspected CAP, providers should also assess the patient’s vaccination and immunologic status and inquire about risk factors for fungal disease, tuberculosis, and aspiration pneumonia. Aspiration pneumonia may be suspected in the setting of neurologic impairment, swallowing dysfunction, or recent sedation.

2.2 Physical Exam

A thorough physical exam is important to the diagnosis and evaluation of community acquired pneumonia. Particular attention should be paid to the pulmonary exam, which may reveal tachypnea, respiratory distress (accessory muscle use, nasal flaring, head bobbing, or grunting), inspiratory crackles, rhonchi, or decreased breath sounds overlying areas of consolidation. While many physical manifestations of respiratory disease are nonspecific, the presence of focal crackles has been shown to correlate well with radiographic pneumonia.\(^\text{49}\)

Because no single physical exam finding, including cyanosis, reliably predicts hypoxemia, pulse oximetry should be used to estimate the arterial oxygen saturation in patient’s suspected of having CAP.\(^\text{6-7}\) By pulse oximetry, hypoxemia is generally defined as an oxygen saturation < 90-92% on room air.\(^\text{1,49}\) The presence of hypoxemia by pulse oximetry been shown to predict radiographic pneumonia in the emergency department\(^\text{49}\) and correlates with disease severity\(^\text{1,7}\); therefore, it has utility in the diagnostic evaluation and in determining the need for hospitalization. Changes in pulse oximetry have been reported to lag arterial oxygen saturations. Because of this, pulse oximetry is not recommended as substitution for cardiorespiratory monitoring in critically ill children.\(^\text{7}\)

2.3 Laboratory Testing

Despite commonly held beliefs, serum white blood cell count and acute phase reactants are not reliable at distinguishing between viral and bacterial etiologies of pneumonia.\(^\text{1}\) In patients with severe or complicated disease, acute phase reactants do have utility as objective markers of response to therapy. Although there are limitations in the use of the serum white blood cell count in determining etiology, the complete blood count can be useful in evaluating for complications of severe disease, such as HUS.\(^\text{1}\) Although rarely clinically relevant, serum electrolytes may be indicated in severely ill patients to evaluate for the presence of acute kidney injury or electrolytes disturbances such as hyponatremia.\(^\text{50}\)

Unless a patient is not responding to therapy as expected, diagnostic testing aimed at identifying an etiology such as serum titers or PCR is usually not available in a clinically relevant time frame and is generally not indicated. Viral testing during the appropriate season, e.g. rapid respiratory syncytial virus (RSV) or influenza testing, may be indicated if the results would impact clinical management, such as decisions regarding antimicrobial therapy, further testing, or the need for imaging. The risk of serious bacterial infection is low in laboratory confirmed viral infection, and a positive influenza test has been proven to decrease the need for ancillary tests, including blood evaluation, CXR, urine cultures and CSF evaluation as well as decrease length of stay in the ED, reduce admission to the hospital and decrease use of antibiotics.\(^\text{51-55}\)

Sputum cultures or tracheal aspirates may be helpful in guiding antimicrobial therapy for more severely ill patients; however, these specimens are difficult to obtain in children and susceptible to contamination by colonizing organisms and are therefore not as reliable as bronchial alveolar lavage (BAL) specimens, which are seldom indicated.

Blood cultures are rarely useful in the care of simple CAP, but may be helpful in narrowing antibiotic therapy in patients not responding to appropriate therapy or in those with severe or complicated disease. The likelihood of a true positive blood culture in children with CAP is <3%.\(^\text{1,13,56-59}\) Frequent false positives occur due to skin contaminants and can lead to unnecessary prolonged hospitalization and excessive resource utilization and treatment.\(^\text{57,59-61}\)
Although the greatest risk exists in foreign-born patients or in those with international travel, clinicians should perform protein-purified derivative (PPD) and serum quantiferon gold assay on patients when tuberculosis is a strong consideration.

2.4 Imaging

A chest x-ray (CXR) will usually confirm the diagnosis of pneumonia; however, CXR cannot reliably distinguish among the various etiologies. Since there is significant intra-observer variation in the diagnosis of pneumonia on radiograph and there exists evidence that CXRs may not affect the clinical outcome in outpatients who meet the clinical diagnosis of pneumonia, CXR is not required to confirm the diagnosis in patients well enough to be managed on an outpatient basis. These recommendations must be weighed against evidence that presence of an alveolar infiltrate or effusion (in contrast to an interstitial infiltrate) results in high concordance between interpreters as well as a suggestion of bacterial pneumonia cause. Furthermore, the negative predictive value of a CXR for pneumonia is high. Diagnosis of pneumonia by clinical assessment without radiograph may lead to overtreatment and increase in antibiotic resistance and clinical factors alone do not reliably predict pneumonia.

CXR should be obtained in those with more severe disease, including those requiring hospitalization, deteriorating on therapy, or not responding to initial management within 48-72 hours. In these instances, imaging is useful to document the presence, size, and character of parenchymal infiltrates and to identify complications of pneumonia that may lead to interventions beyond antibiotic and supportive medical therapy. Response to therapy is generally not gauged by changes in CXR findings, but rather by improvement in laboratory markers (if indicated), fever, tachypnea, respiratory distress, or oxygen saturations.

Repeat CXR should be obtained 4-6 weeks after the diagnosis of CAP in patients with recurrent pneumonia involving the same lobe and in patients with lobar collapse on initial CXR if there is suspicion of foreign body aspiration, chest mass or anatomic anomaly.

In general, chest ultrasound or computerized tomography (CT) is reserved for patients with complicated disease, including evaluation of the size and character of pleural effusions. Clinicians should refer to the Complicated Pneumonia Guidelines for further instruction on the indications for use of these modalities.
Antibiotic therapy is not required when a viral etiology is suspected or confirmed.

3.1 Empiric Antibiotic Selection

Empiric antibiotic therapy should target the most common pathogens, with emphasis placed on *S. pneumoniae* since it is the most frequently isolated bacterial pathogen in most studies, and when untreated, may lead to serious sequela. (1)

Amoxicillin/Ampicillin is the preferred first-line treatment for *S. pneumoniae* because it has a narrow-spectrum of activity in addition to improved tolerability and advantageous pharmacokinetics when compared to intravenous/oral penicillin and oral cephalosporins. National *S. pneumoniae* resistance rates to penicillin are decreasing and DCMCCT *S. pneumoniae* resistance rates to penicillin are minimal such that all patients regardless of immunization status are recommended to receive amoxicillin/ampicillin as first line therapy.

The amoxicillin/ampicillin dosing regimen required for effective therapy is directly related to the susceptibility of *S. pneumoniae* strains. Amoxicillin dosed as 80-90 mg/kg/day divided into 2 equal doses (twice daily dosing) will provide effective treatment for fully susceptible *S. pneumoniae* strains (penicillin MICs ≤ 2 ug/mL). When *S. pneumoniae* strains have elevated penicillin MICs ≥ 2 ug/mL, the 80-90 mg/kg/day may need to be divided into 3 equal doses (three times daily) to achieve higher clinical and microbiologic cure, 90% with three times daily versus 65% with twice daily dosing. (75)

Ampicillin dosed as 200 mg/kg/day divided into 4 equal doses (every 6 hour dosing) will provide effective treatment for fully susceptible *S. pneumoniae* strains (penicillin MICs ≤ 2 ug/mL). The typical maximum daily dose is 8 grams/day however maximum daily doses may range between 4 – 12 grams. Adult literature has shown that a maximum daily dose of 4 grams achieves adequate concentrations for effective treatment of fully susceptible *S. pneumoniae* strains (penicillin MICs ≤ 2 ug/mL). Since pharmacokinetic and pharmacodynamic parameters are similar between adult and children, the maximum dose of ampicillin may be limited to 1 gram every 6 hours for fully susceptible *S. pneumoniae* strains (penicillin MICs ≤ 2 ug/mL). (76-77) When *S. pneumoniae* strains have elevated penicillin MICs ≥ 2 ug/mL dosing up to 400 mg/kg/day divided into 4 equal doses (every 6 hour dosing) may be necessary, maximum daily dose 12 grams. (78-79)

The 2011 PIDS and IDSA Clinical Practice Guidelines for the management of CAP in infants and children recommend inpatients receive alternative first line therapy with ceftriaxone/cefotaxime if a patient is not fully immunized for *H. influenzae* type b and *S. pneumoniae*. However, no evidence was located to support this recommendation and local *S. pneumoniae* resistance rates to penicillin are low such that it is recommended all patients receive amoxicillin/ampicillin as first line therapy.

DCMCCT resistance demonstrates all *S. pneumoniae* strains have MICs ≤ 2 ug/mL such that the recommended amoxicillin dose is 80-90 mg/kg/day divided BID and ampicillin 200 mg/kg/day divided every 6 hours, maximum dose 1.75 gram/dose. Alternative dosing regimens as described above may be considered when *S. pneumoniae* strains with elevated penicillin MICs are suspected or once a penicillin MIC ≤ 2 ug/mL is confirmed.

Azithromycin should not be used alone as empiric therapy for CAP due to unacceptably high national and local resistance rates against *S. pneumoniae*, the most likely pathogen. National resistance rate for *S. pneumoniae* isolates is 56-63% and DCMCCT resistance rate for *S. pneumoniae* isolates is 51%.

3.2 Empiric Therapy for Patients with IgE-mediated Penicillin Allergies

For patients with an IgE-mediated penicillin allergy or a history of serious penicillin reaction, an alternative agent should be selected that has the greatest activity for *S. pneumoniae*, the most likely pathogen. Alternative agents include intravenous ceftriaxone, oral second or third generation cephalosporins (i.e. cefuroxime, cefpodoxime, cefdinir), or clindamycin. For these patients, based on national and local resistance data for *S. pneumoniae*, ceftriaxone (intravenous) and clindamycin (oral/intravenous) are considered the best available options. Clindamycin is the preferred oral agent over second or third generation cephalosporins because national and local resistance rates are lower for *S. pneumoniae* strains. Additionally no oral cephalosporin at doses studied in children provides activity at the site of infection that equals high-dose amoxicillin.
Providers should consider a trial of amoxicillin/amoxicillin under observation if patients report “non-serious” or non IgE-mediated reaction to penicillin. Despite 5-10% of the general population reporting a penicillin allergy; recent studies have shown that up to 95% of these patients are not truly allergic. Additionally, the alternative agents are broad spectrum agents whose unnecessary use increase the risk of development of resistance amongst normal bacterial flora and put patients at increased risk of development of C. difficile infections. Finally, no alternative agent is going to provide as optimal of coverage of S. pneumoniae as high-dose amoxicillin/amoxicillin such that providers should carefully investigate penicillin allergies before deciding to select an alternative agent. (3)

3.3 Empiric Use of Cephalosporins + Clindamycin

A national surveillance study of S. pneumoniae isolated from pediatric respiratory isolates of patients experiencing serious or recurrent/persistent infections showed the following alternative agents had the greatest activity for S. pneumoniae (ranked most to least active): ceftriaxone (89-95% susceptible), clindamycin (85% susceptible), cefuroxime (69% susceptible), cefdinir (59% susceptible). (83) DCMCCT resistance data for S. pneumoniae isolates showed the following alternative agents had the greatest activity for S. pneumoniae (ranked most to least active): ceftriaxone (100% susceptible), clindamycin (90% susceptible), cefuroxime (76% susceptible), cefdinir (unknown). Cefpodoxime was not included in the national surveillance study or local resistance data, however it is the preferred third generation cephalosporin over cefdinir due to its superior in-vitro activity against S. pneumoniae and pharmacokinetic/pharmacodynamic profile. In comparative trials in the treatment of pediatric CAP patients (ages 3 months – 11.5 years), cefpodoxime has shown similar clinical cure rates and improvement as cefuroxime and amoxicillin-clavulanate. (84) The safety and efficacy of cefdinir has only been studied in pediatric CAP patients (ages > 12 years) in comparison to cefaclor. (85) In order to achieve adequate serum drug concentrations for adequate bactericidal killing at the site of action, both cefpodoxime and cefdinir should have the total recommended daily dose divided twice daily which maximizes the time serum drug concentrations spend above the MIC during a dosing interval. (1, 80-82)

3.4 Inpatient and Outpatient Treatment Failures

Patients in the inpatient and outpatient settings who fail to show improvement or worsen within 48-72 hours may require broadening of antibiotic therapy to target less likely pathogens such as penicillin-resistant S. pneumoniae, H. influenzae, S. aureus, or atypical organisms.

In the outpatient setting, amoxicillin-clavulanate with or without azithromycin is the preferred first line treatment for patients failing to show improvement or worsening on high dose amoxicillin because it provides the most optimal coverage for other pathogens such as non-typeable H. influenzae, B-lactamase positive, methicillin sensitive S. aureus (MSSA) and because the incidence of penicillin-resistant S. pneumoniae is low the addition of azithromycin would have the benefit of providing coverage for atypical organisms such as Mycoplasma.

A national surveillance study of non-typeable H. influenzae isolated from pediatric respiratory isolates of patients experiencing serious or recurrent/persistent infections showed the following alternative agents had the greatest activity for non-typeable H. influenzae, B-lactamase positive, methicillin sensitive S. aureus (MSSA) and because the incidence of penicillin-resistant S. pneumoniae is low the addition of azithromycin would have the benefit of providing coverage for atypical organisms such as Mycoplasma.

Published reviews on in-vitro activity and DCMCCT resistance data for MSSA isolates indicate amoxicillin-clavulanate provides to best coverage for MSSA. One hundred percent of MSSA isolates at DCMCCT are susceptible to amoxicillin-clavulanate.

In the inpatient setting, ceftriaxone with or without azithromycin is the preferred first-line treatment for patients failing to show improvement or worsening on high-dose amoxicillin/amoxicillin/amoxicillin-clavulanate because it provides coverage for other pathogens such as penicillin-resistant S. pneumoniae, non-typeable H. influenzae, B-lactamase positive, methicillin-sensitive S. aureus, and atypical organisms. If concern for penicillin-resistant S. pneumoniae is low, ampicillin-sulbactam is an acceptable alternative. The addition of azithromycin would have benefit of providing coverage for atypical organisms.

Ceftriaxone remain active against nearly all S. pneumoniae, including penicillin-resistant strains. See empiric antibiotic selection section for more information on ceftriaxone activity against S. pneumoniae. Additionally the national surveillance study of non-typeable H. influenzae isolated from pediatric respiratory isolates of patients experiencing serious or recurrent/persistent infections showed ceftriaxone activity as being 100%. Though not considered the cephalosporin-of-choice for MSSA, ceftriaxone has activity against it and resistance rates described in the literature have been low. (81-83)
3.5 Treatment of Suspected Atypical Pneumonia

Since mycoplasmas lack a cell wall and are inherently resistant to beta-lactams, suspected *Mycoplasma* pneumonia is most commonly treated with oral macrolides, such as azithromycin and clarithromycin. Doxycycline and fluoroquinolones are also effective but used less often because of concerns for side effects such as permanent dental discoloration in patients age 7 years and younger, and the risk of *Clostridium difficile* colitis, respectively (AAP Red Book 2015). Because of the lack of evidence regarding efficacy of treatment (83-84), difficulty in accurate clinical diagnosis (80), and significant growing concern for the development of macrolide-resistant Mycoplasma (86), British experts advocate for treatment of *Mycoplasma* only in limited situations such as severe infection or after a patient has failed treatment with a beta-lactam (13). The 2011 IDSA CAP guidelines recommended treating with a macrolide in the outpatient setting if a patient’s symptoms are “compatible with” atypical infection, whereas they recommend one should add a macrolide to a beta-lactam when atypical organisms are a “significant consideration” in the inpatient setting; however, the IDSA does not provide guidance on when clinicians should suspect atypical organisms and their evidence supporting the efficacy of macrolide treatment is not strong. Based on a review of the currently available evidence, the DCMC CAP Guidelines work group has concluded that, in most situations, macrolides should not be used as mono-therapy for CAP given the difficulty in accurate diagnosis, lack of evidence towards their efficacy, and the risks associated with not treating *S. pneumoniae*.

IgE-mediated reactions to macrolides are rare and most patients reporting an allergy experienced a mild reaction. Evidence suggests that majority of patients who react to one macrolide tolerated other macrolides suggesting little allergic cross-reactivity, however most patients will tolerate the initial macrolide if it is given again. If patients cannot tolerate azithromycin, clarithromycin or doxycycline may be considered. (87)

3.6 Inpatient and Outpatient Treatment Failures in Patients with an IgE-mediated Allergy to Penicillin

For patients with an IgE-mediated penicillin allergy experiencing a treatment failure an alternative agent should be selected with consideration for penicillin-resistant *S. pneumoniae*, non-typeable *H. influenzae*, B-lactamase positive, atypical organisms, and/or methicillin-sensitive *S. aureus*. Alternative agents include clindamycin, oral second or third generation cephalosporins (i.e. cefuroxime, cefpodoxime, and cefdinir), levofloxacin, and linezolid. When providers consider alternative agents for treatment of this subgroup of patients, they need to consider the spectrum of the initial empiric antibiotic and assess what likely pathogens are not being included. Antibiotic therapy may require expansion to include single or combination antibiotic(s) to ensure adequate treatment of not included pathogens.

See “Empiric use of Cephalosporins + Clindamycin” antibiotic selection section for discussion of activity of alternative agents for *S. pneumoniae*.

A national surveillance study of non-typeable *H. influenzae* isolated from pediatric respiratory isolates of patients experiencing serious or recurrent/persistent infections showed cefuroxime (90-100% susceptible) had greater activity over cefdinir (80-100% susceptible). (83,88) Though not included in this study, based on in vitro activity cefpodoxime is the most active oral second/third generation cephalosporin against *H. influenzae* followed by cefuroxime and cefdinir. (81-82,89) Clindamycin provides no coverage for *H. influenzae* as the organism is intrinsically resistant to clindamycin; however, *H. influenzae* is usually susceptible to azithromycin. The addition of Azithromycin to Clindamycin or use of a second or third-generation cephalosporin over Clindamycin is required for the penicillin-allergic patient in whom there is concern for *H. influenzae*.

Published reviews on in vitro activity indicate cefdinir is the most active against MSSA followed by cefuroxime and cefpodoxime. (81-82) There is no DCMCCRT resistance data for oral second/third generation cephalosporins for MSSA isolates; clindamycin susceptibility for MSSA isolates is 82%.

Providers should consider a trial of amoxicillin-clavulanate under observation if patients report “non-serious” or non-IgE-mediated reaction types to penicillin because no alternative agent is going to provide as optimal of coverage of *S. pneumoniae* and less common pathogens such as *H. influenzae* and MSSA as amoxicillin-clavulanate.

3.7 Considerations for Levofloxacin, Linezolid, and Vancomycin

Use of levofloxacin, linezolid, and vancomycin should be limited due to the high adverse effect profile associated with each agent and to prevent the growth of resistance to such broad spectrum agents.
Levofloxacin, linezolid, and vancomycin provide activity against > 95% S. pneumoniae strains nationally and ≥ 99% S. pneumoniae strains at DCMCCT. Levofloxacin has activity against non-typeable H. influenzae, B-lactamase positive, and atypical organisms; however, its coverage of MSSA is not as optimal as linezolid or vancomycin and it provides no coverage for methicillin-resistant S. aureus (MRSA). Vancomycin and linezolid provide coverage of 100% MSSA and MRSA strains at DCMCCT, but they provide no coverage against non-typeable H. influenzae, B-lactamase positive, or atypical organisms.

Levofloxacin is associated with a variety adverse effect such as CNS events (seizures, headaches, dizziness, and sleep disorders), peripheral neuropathy, and photosensitivity with skin rash, hypo-/hyperglycemia, prolongation of QT interval, hepatic dysfunction, and skeletomuscular complaints. Additionally, the fluoroquinolone drug class has been associated with increased risk for the development of C. difficile infections. Many providers feel hesitant to use levofloxacin in the pediatric population due to concerns about risk of tendon rupture and tendinitis; however, a recent study determined the risks of cartilage injury appear to be uncommon or clinically undetectable/reversible during a 5 year follow-up period. (90–91)

Linezolid is associated with a variety of adverse effects such as reversible platelet and neutrophil suppression and peripheral nerve injury (peripheral/optic); however, these typically do not occur until the end of the second week of therapy (> 14 days of therapy). Linezolid can increase the risk of serotonin syndrome in patients taking other serotonin reuptake inhibitors, as well as any other drugs that increase serotonin concentration in the central nervous system. Linezolid may be preferred over vancomycin when treating patients with pre-existing renal dysfunction or in the outpatient setting. (92)

3.8 Antibiotic Selection for Oral Step-down Therapy

Inpatients may transition from intravenous to oral antibiotic therapy after showing improvement in clinical signs (i.e. fever, oxygen saturation, and respiratory rate) and upon meeting criteria for outpatient management (i.e. oxygen saturations ≥ 90% on room air for ≥ 8 hours, ability to tolerate oral antibiotics, mild-normal work of breathing, and close follow-up).

Patients receiving intravenous ampicillin should be transitioned to oral high dose amoxicillin. (1) Patients receiving intravenous ceftriaxone may also be transitioned to oral high dose amoxicillin if adequate cultures are either not obtained or are obtained after antimicrobial treatment has begun and do not document a pathogen as long as the patient was without an effusion, empyema, or complicated clinical course. (1)

It is recommended patients be transitioned from intravenous ceftriaxone to oral high dose amoxicillin-clavulanate if an effusion or empyema was present or if the clinical course was complicated due to likelihood of infection with pathogens other than S. pneumoniae (i.e. H. influenzae, MSSA). (1)

It is recommended patients receiving intravenous ceftriaxone with suspected penicillin-resistant S. pneumoniae (MICs ≥ 4 μg/mL) be transitioned to oral levofloxacin, however the likelihood of this occurrence is low as the presence of resistance amongst S. pneumoniae has decreased due to PCV7 and PCV13. (1)

Patients receiving intravenous ceftriaxone due to an IgE-mediated allergy should be transitioned to an alternative agents such as clindamycin, oral second or third generation cephalosporins (i.e. cefuroxime, cefpodoxime, cefdinir), or levofloxacin. Providers should select an alternative that has the greatest activity for the suspected pathogen (i.e. penicillin-resistant S. pneumoniae, non-typeable H. influenzae, B-lactamase positive, and/or methicillin-sensitive S. aureus.) See above for discussion regarding spectrum of activity of alternative agents.

Clindamycin, azithromycin, and levofloxacin are available in both intravenous and oral dosage forms and demonstrate excellent bioavailability such that patients may be transitioned from intravenous to oral therapy after signs of clinical improvement (i.e. fever, oxygen saturation, and respiratory rate).

Patients in whom a pathogen is documented should have intravenous antibiotics transitioned to the narrowest spectrum oral antibiotic based on susceptibilities to limit selection of antibiotic resistance.

3.9 Antibiotic Selection for Suspected MRSA or Life-threatening Presentations
Patients with life-threatening presentations (i.e. rapid deterioration, septic shock) suspected MRSA and those meeting PICU criteria should receive combination therapy with ceftriaxone and vancomycin with clindamycin. Due to declining MRSA susceptibilities to clindamycin, vancomycin is preferred in life-threatening presentations. DCMCCT local resistance data indicate 87% MRSA isolates susceptible to clindamycin versus 100% MRSA isolates susceptible to vancomycin. Clindamycin may be considered for coverage of MRSA in non-life-threatening presentations and in those presentations consistent with toxin-mediated disease. (1)

3.9.1 Influenza Antiviral Therapy

It is recommend antiviral therapy with oseltamivir be considered in patients with documented influenza virus infection or those experiencing clinical worsening and presentation consistent with influenza virus infection. Providers should weigh the benefits and risks in patients with mild disease and undocumented influenza virus infection because in oseltamivir treatment studies in children no benefit in clinical outcomes such as clinical course or severity of illness has been demonstrated, whereas adverse effects such as headaches, vomiting, and nausea were reported. (1,93)

3.10 Duration of Therapy

A duration of therapy of 7 to 10 days is recommended based on studies demonstrating both short and longer courses of therapy are effective. The shortest effective duration of therapy should be selected to minimize exposure of both pathogens and normal flora to antibiotics limiting the selection of antibiotic resistance. Shorter courses, 7 days of therapy, should be considered in patients with non-severe disease and/or those in the outpatient setting. Pathogens such as MRSA or complicated courses may require a longer duration of therapy. [1,94]

3.11 Probiotics

The use of probiotics containing Lactobacillus rhamnosus and Saccharomyces boulardii have demonstrated a decrease in the incidence of antibiotic-associated diarrhea when provided in doses ranging from 5.5-20 billion colony-forming units/day. A single capsule of Culturelle® [OTC] contains 10 billion colony-forming units of Lactobacillus rhamnosus GG. A single capsule or powder packet of Florastor® [OTC] contains 5 billion colony-forming units of Saccharomyces boulardii. Use of probiotics in immunocompromised patients is recommended with caution due to risk of infection from live bacteria or yeast.

3.12 Oxygen use, pulse oximetry, and intravenous hydration

Supplemental oxygen therapy should be administered to patients with oxygen saturations persistently < 90% (1), but there is no evidence regarding its use for the treatment of respiratory distress in patients with normal oxygen saturations.

Patients with hypoxemia or respiratory distress should be monitored on continuous pulse oximetry until oxygen saturations are ≥ 90% on room air and they are otherwise showing signs of improvement.

3.12.1 If maintenance IV hydration is required because of vomiting, dehydration or poor oral intake, isotonic fluids are preferred to hypotonic fluids in older infants and children so as to decrease the risk of hyponatremia, which is not uncommon in pediatric respiratory infections. (50)
EBOC Project Owner: Melissa Cossey, MD

Approved by the Community Acquired Pneumonia Evidence-Based Outcomes Center Team

Revision History
Date Approved: May 18, 2015
Review History: May 2017, May 2019
Next Review Date: May 2022

EBOC Team:
Melissa Cossey, MD
Lynn Thoreson, MD
Joanne Adams, MD
Claire Hebner, MD
Marisol Fernandez, MD
Sujit Iyer, MD
Ronda Machen, PharmD
Kathryn Merkel, PharmD
Patrick Boswell
Frank James, MBA

EBOC Committee:
Sarmistha Hauger, MD
Dana Danaher RN, MSN, CPHQ
Mark Shen, MD
Deb Brown, RN
Robert Schlechter, MD
Levy Moise, MD
Sujit Iyer, MD
Tory Meyer, MD
Nilda Garcia, MD
Meena Iyer, MD
Michael Auth, DO
References

38. Lighthow, Anna, et al. Severe group A streptococcal infections in a paediatric intensive care unit. JPC 2014 Sep; 50(9):687-692
63. Br J Gen Pract 2008 Feb;58(547):93-7